Preview

Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»

Расширенный поиск

Иммунопатогенез острого панкреатита

https://doi.org/10.23934/2223-9022-2022-11-3-484-492

Аннотация

Лидирующие позиции по частоте, тяжести течения и высокой смертности занимают инфицированные формы острого панкреатита. Однако изучены не все патофизиологические механизмы развития этой патологии. С учетом того, что иммунные реакции являются неотъемлемой частью патогенеза панкреатита, крайне важно изучить взаимосвязь механизмов воспаления и активации иммунного ответа. В этом обзоре будет обсуждена роль различных популяций клеток врожденного иммунитета, включая макрофаги, нейтрофилы, дендритные и тучные клетки, и регуляторных иммунных клеток в патогенезе деструкции тканей железы и взаимосвязи иммунных реакций и синдрома системного воспалительного ответа. Нацеливание на популяции врожденных иммунных клеток и сигнальные пути метаболитов при остром панкреатите может привести к более широкому и, в конечном счете, более эффективному изменению направления программы лечения в сторону разрешения заболевания и улучшения клинических результатов.

Об авторе

Г. В. Булава
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского ДЗМ»
Россия

Булава Галина Владимировна доктор медицинских наук, научный консультант, лаборатория клинической иммунологии

129090, Москва, Б. Сухаревская пл., д. 3



Список литературы

1. Абакумов М.М., Багненко С.Ф., Белобородов В.Б., Белоцерковский Б.З., Беляев А.М., Бурневич С.З., и др. Абдоминальная хирургическая инфекция. Москва; 2011.

2. Watanabe T, Kudo M, Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 2017;10(2):283–298. PMID:27848953 https://doi.org/10.1038/mi.2016.101

3. van Till JWO, van Veen SQ, van Ruler O, Lamme B, Gouma DJ, Boermeester MA. The innate immune response to secondary peritonitis. Shock. 2007;28(5):504–517. PMID:17589378 https://doi.org/10.1097/shk.0b013e318063e6ca

4. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol. 2021;109(4):717–729. PMID:32881077 https://doi.org/10.1002/JLB.5MIR0720-271RR

5. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6):1199–209. PMID:23622129 https://doi.org/10.1053/j.gastro.2013.02.007

6. Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology. 2019;156(7):1951–1968. PMID:30660731 https://doi.org/10.1053/j.gastro.2018.11.081

7. Hoque R, Malik AF, Gorelick F, Mehal WZ. Sterile inflammatory response in acute pancreatitis. Pancreas. 2012;41(3):353–357. PMID:22415665 https://doi.org/10.1097/MPA.0b013e3182321500

8. Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology. 2014;146(4):1097–1107. PMID:24361123 https://doi.org/10.1053/j.gastro.2013.12.015

9. Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev. 2018;98(2):727–780. PMID:29465288 https://doi.org/10.1152/physrev.00041.2016

10. Peng C, Li Z, Yu X. The Role of Pancreatic Infiltrating Innate Immune Cells in Acute Pancreatitis. Int J Med Sci. 2021;18(2):534–545. PMID:33390823 https://doi.org/10.7150/ijms.51618

11. Xue J, Sharma V, Habtezion A. Immune cells and immune-based therapy in pancreatitis. Immunol Res. 2014;58(2–3):378–386. PMID:24710635 https://doi.org/10.1007/s12026-014-8504-5

12. Antonucci L, Fagman JB, Kim JY, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci USA. 2015;112(45):E6166–6174. PMID:26512112 https://doi.org/10.1073/pnas.1519384112

13. Wan J, Yang X, Ren Y, Li X, Zhu Y, Haddock AN, et al. Inhibition of miR-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model. Cell Death Dis. 2019;10(4):303. PMID:30944299 https://doi.org/10.1038/s41419-019-1545-x

14. Bedrosian AS, Nguyen AH, Hackman M, Connolly MK, Malhotra A, Ibrahim J, et al. Dendritic cells promote pancreatic viability in mice with acute pancreatitis. Gastroenterology. 2011;141(5):1915–1926. PMID:21801698 https://doi.org/10.1053/j.gastro.2011.07.033

15. Lopez-Font I, Gea-Sorlí S, de-Madaria E, Gutiérrez LM, PérezMateo M, Closa D. Pancreatic and pulmonary mast cells activation during experimental acute pancreatitis. World J Gastroenterol. 2010;16(27):3411–3417. PMID:20632444 https://doi.org/10.3748/wjg.v16.i27.3411

16. Shifrin AL, Chirmule N, Gao GP, Wilson JM, Raper SE. Innate immune responses to adenoviral vector-mediated acute pancreatitis. Pancreas. 2005;30(2):122–129. PMID:15714134 https://doi.org/10.1097/01.mpa.0000151578.99413.88

17. Son A, Ahuja M, Schwartz DM, Varga A, Swaim W, Kang N, et al. Ca(2+) Influx Channel Inhibitor SARAF Protects Mice From Acute Pancreatitis. Gastroenterology. 2019;157(6):1660–1672. PMID:31493399 https://doi.org/10.1053/j.gastro.2019.08.042

18. Sendler M, Dummer A, Weiss FU, Krüger B, Wartmann T, ScharffetterKochanek K, et al. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut. 2013;62(3):430–439. PMID:22490516 https://doi.org/10.1136/gutjnl-2011-300771

19. Sendler M, Weiss FU, Golchert J, Homuth G, van den Brandt C, Mahajan UM, et al. Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology. 2018;154(3):704–718. PMID: 29079517 https://doi.org/10.1053/j.gastro.2017.10.018

20. van Dijk SM, Hallensleben NDL, van Santvoort HC, Fockens P, van Goor H, Bruno MJ, et al. Acute pancreatitis: recent advances through randomised trials. Gut. 2017;66(11):2024–2032. PMID:28838972 https://doi.org/10.1136/gutjnl-2016-313595

21. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102–111. PMID:23100216 https://doi.org/10.1136/gutjnl2012-302779

22. Tan C, Yang L, Shi F, Hu J, Zhang X, Wang Y, et al. Early Systemic Inflammatory Response Syndrome Duration Predicts Infected Pancreatic Necrosis. J Gastrointest Surg. 2020;24(3):590–597. PMID:30891659 https://doi.org/10.1007/s11605-019-04149-5

23. Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–2

24. Sônego F, Castanheira FV, Ferreira RG, Kanashiro A, Leite CA, Nascimento DC, et al. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol. 2016;7:155. PMID:27199981 https://doi.org/10.3389/fimmu.2016.00155

25. Jorch SK and Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–287. PMID:28267716 https://doi.org/10.1038/nm.4294

26. Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62(2):600–614. PMID:25855125 https://doi.org/10.1002/hep.27841

27. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. PMID:15001782 https://doi.org/10.1126/science.1092385

28. Zha C, Meng X, Li L, Mi S, Qian D, Li Z, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med. 2020;17(1):154–168. PMID:32296583 https://doi.org/10.20892/j.issn.2095-3941.2019.0353

29. Rada B. Neutrophil Extracellular Traps. Methods Mol Biol. 2019;1982:517–528. PMID:31172493 https://doi.org/10.1007/978-1-4939-9424-3_31

30. Воробьева Н.В., Пинегин Б.В. Внеклеточные ловушки нейтрофильных клеток: механизмы формирования и роль в здоровье и болезнях. Биохимия. 2014;79(12):1580–1591.

31. Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE. 2007;2007(379): pe11. PMID:17392241 https://doi.org/10.1126/stke.3792007pe11

32. Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, HenriquesNormark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol. 2006;16(4):401–407. PMID:16488875 https://doi.org/10.1016/j.cub.2006.01.056

33. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun. 2010;2(6):576–586. PMID:20829609 https://doi.org/10.1159/000319909

34. Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013;342(6160):863–866. PMID:24233725 https://doi.org/10.1126/science.1242255

35. Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377–396. PMID:32202340 https://doi.org/10.1002/JLB.4MIR0220-574RR

36. Hines OJ, Pandol SJ. Management of severe acute pancreatitis. BMJ. 2019;367:l6227. PMID:31791953 https://doi.org/10.1136/bmj.l6227

37. Gukovskaya AS, Gukovsky I, Algül H, Habtezion A. Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology. 2017;153(5):1212–1226. PMID:28918190 https://doi.org/10.1053/j.gastro.2017.08.071

38. Kovtun A, Messerer DAC, Scharffetter-Kochanek K, Huber-Lang M, Ignatius A. Neutrophils in Tissue Trauma of the Skin, Bone, and Lung: Two Sides of the Same Coin. J Immunol Res. 2018;2018:8173983. PMID:29850639 https://doi.org/10.1155/2018/8173983

39. Han X, Ni J, Wu Z, Wu J, Li B, Ye X, et al. Myeloid-specific dopamine D2 receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol. 2020;177(13):2991–3008. PMID:32060901 https://doi.org/10.1111/bph.15026

40. Zhao Q, Wei Y, Pandol SJ, Li L, Habtezion A. STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis. Gastroenterology. 2018;154(6):1822–1835. PMID:29425920 https://doi.org/10.1053/j.gastro.2018.01.065

41. Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2002;9(4):401–410. PMID:12483260 https://doi.org/10.1007/s005340200049

42. Roch AM, Maatman TK, Cook TG, Wu HH, Merfeld-Clauss S, Traktuev DO, et al. Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis. J Gastrointest Surg. 2020;24(1):67–75. PMID:31745900 https://doi.org/10.1007/s11605-019-04411-w

43. Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019;26(1):99–114. PMID:30341423 https://doi.org/10.1038/s41418-018-0212-6

44. Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42(4):245–254. PMID:27932073 https://doi.org/10.1016/j.tibs.2016.10.004

45. Gordon S, Martinez-Pomares L. Physiological roles of macrophages. Pflugers Arch. 2017;469(3–4):365–374. PMID:28185068 https://doi.org/10.1007/s00424-017-1945-7

46. Arango Duque G and Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. PMID:25339958 https://doi.org/10.3389/fimmu.2014.00491

47. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–6440. PMID:29319160 https://doi.org/10.1002/jcp.26429

48. Murray PJ. Macrophage Polarization. Annu Rev Physiol. 2017;79:541–566. PMID:27813830 https://doi.org/10.1146/annurev-physiol-022516-034339

49. Su Z, Zhang P, Yu Y, Lu H, Liu Y, Ni P, et al. HMGB1 Facilitated Macrophage Reprogramming towards a Proinflammatory M1-like Phenotype in Experimental Autoimmune Myocarditis Development. Sci Rep. 2016;6:21884. PMID:26899795 https://doi.org/10.1038/srep21884

50. Yang J, Zhao Y, Zhang L, Fan H, Qi C, Zhang K, et al. RIPK3/MLKLMediated Neuronal Necroptosis Modulates the M1/M2 Polarization of Microglia/Macrophages in the Ischemic Cortex. Cereb Cortex. 2018;28(7):2622–2635. PMID:29746630 https://doi.org/10.1093/cercor/bhy089

51. Wang J, Li R, Peng Z, Zhou W, Hu B, Rao X, et al. GTS-21 Reduces Inflammation in Acute Lung Injury by Regulating M1 Polarization and Function of Alveolar Macrophages. Shock. 2019;51(3):389–400. PMID:29608552 https://doi.org/10.1097/SHK.0000000000001144

52. Han X, Ni J, Wu Z, Wu J, Li B, Ye X, et al. Myeloid-specific dopamine D2 receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol. 2020;177(13):2991–3008. PMID:32060901 https://doi.org/10.1111/bph.15026

53. Wen S, Li X, Ling Y, Chen S, Deng Q, Yang L, et al. HMGB1- associated necroptosis and Kupffer cells M1 polarization underlies remote liver injury induced by intestinal ischemia/reperfusion in rats. Faseb J. 2020;34: 4384–4402. PMID:31961020 https://doi.org/10.1096/fj.201900817R

54. Liu RH, Wen Y, Sun HY, Liu CY, Zhang YF, Yang Y, et al. Abdominal paracentesis drainage ameliorates severe acute pancreatitis in rats by regulating the polarization of peritoneal macrophages. World J Gastroenterol. 2018;24(1):5131–5143. PMID:30568390 https://doi.org/10.3748/wjg.v24.i45.5131

55. Wu XB, Sun HY, Luo ZL, Cheng L, Duan XM, Ren JD. Plasma-derived exosomes contribute to pancreatitis-associated lung injury by triggering NLRP3-dependent pyroptosis in alveolar macrophages. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165685. PMID:31953217 https://doi.org/10.1016/j.bbadis.2020.165685

56. Puhr S, Lee J, Zvezdova E, Zhou YJ and Liu K. Dendritic cell developmentHistory, advances, and open questions. Semin Immunol. 2015;27(6):388–396. PMID:27040276 https://doi.org/10.1016/j.smim.2016.03.012

57. Françozo MCS, Costa FRC, Guerra-Gomes IC, Silva JS and SestiCosta R. Dendritic cells and regulatory T cells expressing CCR4 provide resistance to coxsackievirus B5-induced pancreatitis. Sci Rep. 2019;9(1):14766. PMID:31611578 https://doi.org/10.1038/s41598-019-51311-9

58. Del Fresno C, Saz-Leal P, Enamorado M, Wculek SK, Martínez-Cano S, Blanco-Menéndez N, et al. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science. 2018;362(6412):351–356. PMID:30337411 https://doi.org/10.1126/science.aan8423

59. Xu D, Xie R, Xu Z, Zhao Z, Ding M, Chen W, et al. mTOR-Myc axis drives acinar-to-dendritic cell transition and the CD4(+) T cell immune response in acute pancreatitis. Cell Death Dis. 2020;11(6):416. PMID:32488108 https://doi.org/10.1038/s41419-020-2517-x

60. Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209(9):1671–1687. PMID:22908323 https://doi.org/10.1084/jem.20111706

61. Pan LL, Niu W, Fang X, Liang W, Li H, Chen W, et al. Clostridium butyricum Strains Suppress Experimental Acute Pancreatitis by Maintaining Intestinal Homeostasis. Mol Nutr Food Res. 2019;e1801419. PMID:31034143 https://doi.org/10.1002/mnfr.201801419

62. González-de-Olano D, Álvarez-Twose I. Mast Cells as Key Players in Allergy and Inflammation. J Investig Allergol Clin Immunol. 2018;28(6):365–378. PMID:30530385 https://doi.org/10.18176/jiaci.0327

63. Yönetçi N, Oruç N, Ozütemiz AO, Celik HA, Yüce G. Effects of mast-cell stabilization in cerulein-induced acute pancreatitis in rats. Int J Pancreatol. 2001;29(3):163–171. PMID:12067220 https://doi.org/10.1385/IJGC:29:3:163

64. Dib M, Zhao X, Wang XD, Andersson R. Role of mast cells in the development of pancreatitis-induced multiple organ dysfunction. Br J Surg. 2002;89(2):172–178. PMID:11856129 https://doi.org/10.1046/j.0007-1323.2001.01991.x

65. Kempuraj D, Twait EC, Williard DE, Yuan Z, Meyerholz DK, Samuel I. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice. PLoS One. 2013;8(2):e56866. PMID:23418608 https://doi.org/10.1371/journal.pone.0056866

66. Leema G, Tamizhselvi R. Protective Effect of Scopoletin Against Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice. Pancreas. 2018;47:577–585. PMID:29595543 https://doi.org/10.1097/MPA.0000000000001034

67. Zitti B and Bryceson YT. Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev. 2018;42:37–46. PMID:30122459 https://doi.org/10.1016/j.cytogfr.2018.08.001

68. Mylona V, Koussoulas V, Tzivras D, Makrygiannis E, Georgopoulou P, Koratzanis G, et al. Changes in adaptive and innate immunity in patients with acute pancreatitis and systemic inflammatory response syndrome. Pancreatology. 2011; 11(5):475–481. PMID:21997439 https://doi.org/10.1159/000329460

69. Wei X, Yao W, Li H, Qian J, Xie Y, Zhang Z, et al. B and NK Cells Closely Correlate with the Condition of Patients with Acute Pancreatitis. Gastroenterol Res Pract. 2019;2019:7568410. PMID:30881449 https://doi.org/10.1155/2019/7568410

70. Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Sawa H, Nakajima T, et al. Immunosuppression in patients with severe acute pancreatitis. J Gastroenterol. 2006;41(8):779–784. PMID:16988767 https://doi.org/10.1007/s00535-006-1852-8

71. Dabrowski A, Osada J, Dabrowska MI, Wereszczynska-Siemiatkowska U. Monocyte subsets and natural killer cells in acute pancreatitis. Pancreatology. 2008;8(2):126–134. PMID:18382098 https://doi.org/10.1159/000123605

72. Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Yaseen MM, et al. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol. 2020;10(9):200111. PMID:32931721 https://doi.org/10.1098/rsob.200111

73. Goldmann O, Beineke A, Medina E. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils. J Infect Dis. 2017;216(11):1444–1451. PMID:29029332 https://doi.org/10.1093/infdis/jix494

74. Heim CE, Vidlak D, Kielian T. Interleukin-10 production by myeloidderived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J Leukoc Biol. 2015;98(6):1003–1013. PMID:26232453 https://doi.org/10.1189/jlb.4VMA0315-125RR

75. Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315–327. PMID:24656045 https://doi.org/10.1016/j.immuni.2014.02.009

76. Chen H, Qin J, Wei P, Zhang J, Li Q, Fu L, et al. Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and Th17 cells. Prostaglandins Leukot. Essent. Fatty Acids. 2009;80(4):195–200. PMID:19264469 https://doi.org/10.1016/j.plefa.2009.01.006

77. D’Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH et al. CD4+CD25+Foxp3+ Treg cells resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest. 2009;119(10):2898–2913. PMID:19770521 https://doi.org/10.1172/JCI36498

78. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, et al. A distinct function of regulatory T cells in tissue protection. Cell. 2015;162(5):1078–1089. PMID:26317471 https://doi.org/10.1016/j.cell.2015.08.021

79. Proto JD, Doran AC, Gusarova G, Yurdagul A Jr, Sozen E, Subramanian M, et al. Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity. 2018;49(4):666–677. PMID:30291029 https://doi.org/10.1016/j.immuni.2018.07.015

80. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Antiinflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356(6337):513–519. PMID:28473584 https://doi.org/10.1126/science.aal3535

81. Newson J, Stables M, Karra E, Arce-Vargas F, Quezada S, Motwani M, et al. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood. 2014;124(11):1748–1764. PMID:25006125 https://doi.org/10.1182/blood-2014-03-562710

82. Sutmuller RP, van Duivenvoorde LM, van EA, Schumacher TN, Wildenberg ME, Allison JP, et al. Synergism of cytotoxic T lymphocyteassociated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. 2001;194(6):823–832. PMID:11560997 https://doi.org/10.1084/jem.194.6.823

83. Galdeano CM, Cazorla SI, Lemme-Dumit JM, Vélez E, Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab. 2019;74(2):115–124. PMID:30673668 https://doi.org/10.1159/000496426

84. Lemme-Dumit JM, Polti MA, Perdigón G, Galdeano CM. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Benef Microbes. 2018;9(1):153–164. PMID:29124968 https://doi.org/10.3920/BM2016.0220


Рецензия

Для цитирования:


Булава Г.В. Иммунопатогенез острого панкреатита. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2022;11(3):484-492. https://doi.org/10.23934/2223-9022-2022-11-3-484-492

For citation:


Bulava G.V. Immunopathogenesis of Acute Pancreatitis. Russian Sklifosovsky Journal "Emergency Medical Care". 2022;11(3):484-492. https://doi.org/10.23934/2223-9022-2022-11-3-484-492

Просмотров: 554


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)